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1. Introduction

The system considered here is an initially quiescent,
horizontal ¯uid layer of depth d, as shown in Fig. 1.

The ¯uid layer is strati®ed stably with a uniform tem-
perature gradient for time t< 0. The constant bottom
temperature is kept at Ti with the upper constant sur-
face temperature Tu (>Ti). With time tr0 the layer is

heated isothermally from below with the stepwise tem-
perature increase to the constant temperature Tb. For
a high DT (=TbÿTi) buoyancy-driven convection will

set in. The problem is to ®nd the characteristic time to
mark the onset of convective motion. Conventionally
there are two characteristic times: one is the critical

time to mark the onset of convective motion and the
other is the time to represent manifest convection
observable. Here the former one is denoted as tc and

the latter as t0.
The important parameters to describe the present

system are the Prandtl number Pr, the Rayleigh num-
ber Ra, and the temperature ratio g de®ned as

Pr � n
a
, Ra � gbDTd3

an
and g � Tu ÿ Ti

DT
�1�

where n denotes the kinematic viscosity, a the thermal
di�usivity, g the gravitational acceleration, and b the
thermal expansion coe�cient. In case of slow heating

the basic temperature pro®le becomes linear, i.e. a con-
stant temperature gradient and convection sets in when

the Rayleigh number exceeds the critical value of

Ra�1ÿ g� � 1708 �2�

But for a rapidly heated system of large Ra, the basic
conduction state involves time and therefore, the re-
lated stability problem becomes very complicated.
The above situation is similar to the case of double-

di�usive convection in initially stably strati®ed ¯uid
layers [1,2]. Its related stability analysis was conducted
by Ueda et al. [3]. Here their theoretical results from

the ampli®cation theory [4] and experimental ones will
be compared with those from the frozen-time model [5]
and also the propagation theory we have developed

[1,6,7].

2. Stability analysis

For the present system we de®ne a set of nondimen-
sional variables t and z by using the scale of time d 2/a
and length d. The dimensionless basic temperature

y0[=(T0ÿTu)/(TbÿTi)] of the conduction state, can be
described by

y0 � �1ÿ g��1ÿ z� ÿ 2

p

X1
n�1

sin npz
n

exp�ÿn2p2t� �3�

For deep-pool systems of small t, the LeveÃ que-type
solution can be obtained as follows:

y0 � 1ÿ erf

�
z

2
���
t
p

�
ÿ g�1ÿ z� �4�
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The above solution agrees well with Eq. (3) in the
region of t < 0.05.
Under the linear stability theory the disturbances

caused by the onset of thermal convection can be for-
mulated, in dimensionless form, in terms of the tem-
perature component y1 and the vertical velocity

component w1 under the Boussinesq approximation
[1,2,7]:�

1

Pr

@

@t
ÿ r2

�
r2w1 � r2

1y1 �5�

@y1
@t
� Ra w1

@y0
@z
� r2y1 �6�

where

r2 � @ 2

@x 2
� @ 2

@y2
� @ 2

@z2
and r2

1 �
@ 2

@x 2
� @ 2

@y2

The velocity disturbance w1 has the scale of a/d and

the temperature disturbance y1 has the scale of an/
( gbd 3). The proper boundary conditions are given by

w1 � @w1

@z
� y1 � 0 at z � 0 and z � 1 �7�

The boundary conditions represent no ¯ow on the

boundaries, i.e. no-slip and the ®xed temperature on
the upper and lower boundaries. Our goal is to ®nd
the critical time tc to mark the onset of convection for

a given Ra by using Eqs. (5)±(7). With the frozen-time
model the terms involving @(�)/@t are neglected and the
time becomes the parameter. With the ampli®cation
theory the proper initial conditions at t=0 are

required and the ampli®cation ratio to decide the time
`t0' to mark manifest convection becomes the most im-
portant parameter. The ampli®cation theory is quite

popular but its ampli®cation ratio to represent mani-
fest convection should be decided experimentally.
However, the propagation theory described below is a

rather simple, deterministic method even though it
involves the time evolution.
According to the normal mode analysis, convective

motion is assumed to exhibit the horizontal periodicity.
Then the perturbed quantities can be expressed as fol-

lows:

�w1�t, x, y, z�, y1�t, x, y, z��

� �w1�t, z�, y1�t, z�� exp�i�axx� ayy��
�8�

where `i' is the imaginary number and ax and ay rep-

resent the wave numbers. Substituting the above Eq.
(8) into Eqs. (5)±(7) produces the usual amplitude
functions in terms of the dimensionless horizontal
wave number a=(a 2

x+a 2
y)
1/2. The propagation theory

employed to ®nd the critical time `tc' to mark the onset
of convective motion is based on the assumption that
at the onset of convection, disturbances are propagated

mainly within the dimensional thermal penetration
depth DT and Choi et al.'s [1,6] scale analysis would be
valid for perturbed quantities. Then the following re-

lationship is obtained:����w1

y1

����0d2T �9�

where dT �� DT=dA
���
t
p � is the dimensionless thermal

penetration depth.
Now, the dimensionless amplitude functions of dis-

turbances are expressed as

�w1�t, z�, y1�t, z�� � �tw��z�, y��z�� �10�
where z � z=

���
t
p

. By using these relations the stability
equations are obtained from Eqs. (5) and (6) as

�D2 ÿ a�2�2w�

� a�2y� ÿ 1

Pr

�
1

2
zD3w� ÿ 1

2
a�2zDw� � a�2w�

� �11�

�D2 ÿ a�2�y� � ÿ1
2
zDy� � Ra� w�Dy0 �12�

with the following boundary conditions,

w� � Dw� � y� � 0 at z � 0 and 1=
���
t
p �13�

where

a� � a
���
t
p

, Ra� � t3=2 Ra, D � d=dz, g� � g
���
t
p

and Dy0 � g� ÿ 1���
p
p exp

�
ÿ z2

4

�
For this deep-pool system of a given Pr and g �, a �

and Ra � are obtained under the principle of the

exchange of stabilities. In this case the outer boundary
z � 1=

���
t
p

is practically equivalent to an in®nite high
value since t is small. In other words the minimum

Fig. 1. Schematic diagram of the system considered here.
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value tc and its corresponding wave number ac are

obtained for a given g, Ra and Pr. For Pr 4 0, the left

term in Eq. (11) is neglected due to insigni®cant vis-

cous e�ects and therefore, Pr Ra � becomes the par-

ameter. The above procedure is the essence of our

propagation theory. Therefore, our propagation theory

is a relaxed frozen-time model involving the terms @(�)/
@t in Eqs. (5) and (6). The present analysis is to ®nd

the fastest growing disturbances at tc to a certain

degree.

With an increase in time the basic temperature pro-

®le approaches a linear one, as is shown in Eq. (3).

This corresponds to the case of very slow heating.

With the linear basic temperature pro®le, many

researchers have conducted the stability analysis. For a

slightly nonlinear basic temperature ®eld of large t, the
so-called frozen-time model is applied and therefore, it

is assumed that @w1/@t=@y1/@t=0, as usual. Now, the

stability Eqs. (5) and (6) are independent of the

Prandtl number and y0 is given by Eq. (3). The bound-

ary conditions are given as usual. From these

equations tc and ac are found for a given g and Ra.

With this model w1 and y1 are functions of z only, for

tc is the parameter independent of Pr.

The above equations were solved numerically by

employing the outward shooting scheme [1,6].

3. Results and discussion

The critical values of Ra �c and a �c from the propa-
gation theory are summarized in Table 1 for a given
Pr and g �. It seems evident that Ra �c increases with a

decrease in Pr and the Pr-e�ect on the critical con-
dition is negligible for Prr10. The Pr-e�ect becomes
pronounced for Pr R 1. The peculiar overall stability

criteria for Pr 41 are represented in Fig. 2. For
tc < 0.04 the critical time tc from the frozen-time
model is lower than that from the propagation theory.

Furthermore, the frozen-time model is independent of
Pr and therefore, the di�erence between two models
becomes larger with a decrease in Pr. Both models

produce the minimum Ra and at tc 1 0.1 two curves
do not intersect each other with gr0.7. In this g-range
the former predictions have been plotted up to its
minimum Ra-value and in the domain exceeding its

corresponding tc the latter ones have been plotted. The
propagation theory would be valid for small tc while
for large tc the frozen-time model is valid. Ra

approaches the in®nite value at

tc � g2=p for g > 1 �14�

This condition is obtained from Eq. (4) with the stable
condition @y0/@zvz = 0>0, which means that the hori-

Table 1

Critical conditions for tc < 0.05 from the propagation theory

Pr g� Ra �c a �c Pr g� Ra �c a �c

0a 0.0 16.61 0.82 10 0.0 23.57 0.58

0.05 20.41 0.89 0.05 43.25 0.76

0.1 25.52 0.96 0.1 71.68 0.88

0.15 32.64 1.05 0.15 117.08 0.99

0.2 42.93 1.14 0.2 194.42 1.10

0.01 0.0 1799.1 0.82 100 0.0 20.70 0.54

0.05 2228.6 0.89 0.05 41.35 0.76

0.1 2812.2 0.98 0.1 69.62 0.88

0.15 3632.4 1.07 0.15 114.65 0.99

0.2 4833.5 1.17 0.2 191.14 1.10

0.1 0.0 219.10 0.81 1000 0.0 20.69 0.53

0.05 273.83 0.89 0.05 41.16 0.76

0.1 362.63 0.98 0.1 69.42 0.88

0.15 484.69 1.06 0.15 114.41 0.99

0.2 671.43 1.16 0.2 191.10 1.10

1 0.0 44.81 0.63 1 0.0 20.67 0.53

0.05 65.20 0.80 0.05 41.15 0.76

0.1 96.40 0.90 0.1 69.40 0.88

0.15 146.21 0.99 0.15 114.39 1.05

0.2 230.16 1.10 0.2 191.07 1.10

a In the case of Pr = 0, Ra �c must be replaced by Pr Ra �c.
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zontal ¯uid layer is absolutely stable due to cooling
from below. The similar trend can also be seen from

the propagation theory. For a given Pr and Ra the
critical values of tc increase with increasing g. All these
results will be valid for tc < 0.05. The amplitude pro-

®les calculated show that the temperature disturbances
are con®ned mainly to some appreciable thermal depth
while the velocity disturbances are propagated more

deeply from the heated surface with an increase in Pr.
It is certain that the inertial terms make the system
more stable and for Pr < 1 both the temperature and

velocity disturbances are propagated within almost the
same thermal thickness. This trend characterizes the
boundary layer ¯ow of buoyancy-driven convection.
For the basic state of nearly linear temperature pro-

®les, i.e. su�ciently large tc, the frozen-time model can
be a good approximation. In case of t41, the stab-
ility limits represented by Eq. (2) are independent of

Pr. For gr1 the instabilities will disappear with
increasing time, e.g. tc>0.1. It is interesting that some
kind of subcritical state is possible for g>0.7, as

shown in Fig. 2. The larger the value of g, the more
easily the minimum value of Ra near tc=0.05 is
detected. With g=0.9 amplitude pro®les show double
cell characteristics at tc=0.01. This peculiar behavior

seems to re¯ect the possibility of multiple cell patterns.
These interesting phenomena are also discussed in
Ueda et al.'s [3] work. With g=1.2 the system illus-

trated in Fig. 2 will experience two critical times for a
given Ra. For example, in the case of Ra= 105, the
®rst instabilities will appear at tc130.01 with the second

ones at tc230.1. tc2 may be meaningless because of the
incipient convective motion at tc1. Of course, these

instabilities will disappear in the range exceeding the

time given by Eq. (14). Near tc=0.1 the predictions
from two models are not exact. But for g R 0.5 the
two predictions intersect each other and it is interesting
that for tc>0.1 Ra is given by Eq. (2). Therefore, it

Fig. 3. Comparison of predictions (ampli®cation theory with

Pr = 8800 and EÃ=102; propagation theory with Pr41) at

Ra= 15,000 with experimental ones of Ra= 9000±17,000

and Pr= 8800: (a) characteristic times; and (b) associated

critical wave numbers. Here tc and t0 denote the characteristic

time to mark the onset of convection and that of manifest

convection, respectively.

Fig. 2. Predictions of the critical time to mark the onset of

convective motion.
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may be loosely stated that the predictions in Fig. 2
cover the whole domain for Pr 41.

With decreasing Pr the tc-value from the propa-
gation theory will increase. Choi et al. [7] presented an
approximate correlation of

tc � 7:80��1� 0:739=Pr�=Ra�2=3 for g � 0 �15�
which agrees well with those in Table 1. Lee [8] and
Patrick and Wragg [9] conducted electroplating exper-

iments of mass transfer using the limiting current
method. The deviation points of mass transfer from
that of mass di�usion agree well with those values of

4tc obtained from Eq. (15) with Pr 41. Foster [4]
commented that a certain growth time of disturbances
is required to be detected experimentally and the re-

lation of t034tc would be maintained. This means that
manifest convection will be exhibited at t=t0>tc in
the deep-pool systems of g=0 [6,10,11].

For analyzing instabilities of the present system
Ueda et al. [3] conducted experiments and the exper-
imental data points were compared with predictions
from the ampli®cation theory. They expanded the tem-

perature and vertical velocity disturbances into a series
of orthonormal functions which satisfy the boundary
conditions automatically. For example, the tempera-

ture disturbance was represented by

y1 �
X1
1

An�t� sin npz �16�

with An (0)=1 and the ampli®cation ratio EÃ was

de®ned as

Ê � �total energy at t�
�total energy at t � 0� �17�

For details, refer to their work. With these the fastest

growing disturbance and its characteristic time to
reach the predetermined EÃ-value, i.e. 1, 102, 104 or 108

was found. It is doubtful whether the temperature dis-

turbances like Eq. (16) will exist at t = 0. But it will
be interesting to compare their predictions with the
present ones. In the case of Pr = 7, the present tc is

lower than theirs and the present t0 (=4tc) locates
between EÃ=1±102. It is noted that their ampli®cation
theory is rather sensitive to Pr but with the propa-
gation theory the e�ect of Pr is negligible for Prr10.

In experiments Ueda et al. [3] used very viscous ¯uid
of Pr = 8800. In their experiments Ra ranged from
9000±17,000 with g=0.73±1.67. For comparison with

experiments they employed the ampli®cation theory
with Ra = 15,000 and Pr = 150, while the present pre-
dictions obtained from the propagation theory are

those of Ra= 15,000 and Pr41. Fig. 3(a) shows
that the present tc-values are about one-fourth of their
theoretical predictions of EÃ=102 for g Raÿ1/3 < 0.03

and in this range theirs agree well with those from

t0=4tc. Since the Rayleigh number is ®xed at 15,000
in the theoretical analyses, predictions of t0 and ac in
Fig. 3 re¯ect the g-e�ect only. t0 shows the maximum

near g Raÿ1/3=0.028 with experiments and if it is con-
verted with Ra= 15,000, near g=0.7 from the ampli®-
cation theory. But the propagation theory shows that

the values of t0 Ra
2/3 increase with increasing g Raÿ1/3

and terminates at tc30.1, as shown in Fig. 2. With

Pr=1 and g=0, the relation of t0 Ra 2/3330 is
obtained from Eq. (15) or Table 1. The last two exper-
imental data points for g Raÿ1/3>0.03 deviate signi®-

cantly from results obtained from the propagation
theory. In Fig. 3(a) the tc2-values of the second

instabilities from the frozen-time model (see Fig. 2) are
also plotted in the range of 0.035 < g Raÿ1/3

< 0.0395. Based on Eq. (2), it is known that the value

of g Raÿ1/3 terminates at 0.0395 since the value of g
Raÿ1/3 reaches the maximum with g=0.75. In other
words the system having a linear temperature gradient

in the fully-developed conduction state is stable for g
Raÿ1/3>0.0395. This means that the growth period

from the onset of convective motion to detection of
manifest convection decreases in the range exceeding a
certain g-value and the relation of tc < t0 < 4tc is

possible. Therefore, the last experimental data point in
Fig. 3(a) may be close to the predicted tc-values from
both the frozen-time model and the propagation the-

ory. But it may be stated that tc from the propagation
theory produces a minimum bound of detection time

t0.
It is interesting that with the frozen-time model tc

decreases with increasing g. But predictions are still far

from experimental data. The di�erence may be caused
by the following. The above predictions of tc for

Ra = 15,000 are those for an initially linear tempera-
ture pro®le but Ueda et al.'s experimental one was S-
shaped with the lower half slightly warmer than the

linear one and the upper half cooler. Furthermore, the
de®nition of the critical time is not clear for the linear
temperature pro®le. In other words the critical time

may be meaningless for large time, wherein tc varies
widely with a small change in Ra, as shown in Fig. 2.

For small time Yoon et al. [2] reported that strong
strati®cation, i.e. a high g-value brings early manifest
convection of t03tc. Another comparison is possible

with respect to the critical wave number, as shown in
Fig. 3(b). The cell size obtained from the propagation

theory is smaller than that from the ampli®cation the-
ory and experimental data points locate between pre-
dictions from two models. All the above comparison

concludes that Ueda et al.'s [3] experimental range is
in the transition region from the deep-pool to the
large-tc system owing to rather low Ra-values. It seems

certain that the present propagation theory is a good
method to predict the onset of thermal convection in a
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horizontal ¯uid layer of large Ra, i.e. in the deep-pool
system of small time.

4. Conclusion

The onset of buoyancy-driven motion in initially
stably-strati®ed horizontal ¯uid layers has been ana-
lysed here by using the linear stability theory. For

small time, the propagation theory has been employed
to predict the critical time to mark the onset of con-
vective motion and for large time the frozen-time

model has been used. It is shown that for g Raÿ1/
3 < 0.03 the propagation theory produces the stability
criteria consistent with Ueda et al.'s [3] experiments
and predictions from the ampli®cation theory. But the

frozen-time model produces a peculiar shape in the
plot of t0 Ra 2/3 vs g Raÿ1/3. For large g-values both
the multiple-cell patterns and the behavior of subcriti-

cal state are exhibited, producing the minimum of Ra
in the plot of Ra vs tc for a given g. In this g-range
two critical times exist for a given Ra and Pr. The ear-

lier one brings convective motion and for gr1 motion
will disappear with time. But the later one is possible
in case of very weak motion. Finally, no motion will

exist in this g-range. The incipient cell pattern is almost
independent of g and for large time the critical time
loses its role as a parameter.
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